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Proper orthogonal decomposition and Galerkin projection
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A general method by which to investigate nonlinear dynamical systems close to a stability threshold is
presented. This method combines a proper orthogonal decomposition and a subsequent Galerkin projection.
This technique is applied to three-dimensional resistive ballooning plasma fluctuations in a tokamak. The
corresponding dynamical system belongs to a large family of convective fluid systems including Rayleigh-
Benard convection. A proper orthogonal decomposition of the fluctuating signal obtained by numerical simu-
lation shows that the relevant modes are close to the lifgdabal) modes. The Galerkin projection provides
a low-dimensional system that allows the study of shear flow generation, its subsequent fluctuation reduction,
and the evolution to oscillating states.

PACS numbses): 52.35.Ra, 52.35.Py, 47.27.Eq, 52.35.Mw

[. INTRODUCTION The latter point is not trivial in the sense that linear eigen-
modes are not simple in tokamaks. The determination of
Nonlinear dynamical systems close to a stability thresholdhese modes, called “global mode$6—8|, is part of this
are often investigated through reduced sets of ordinary difwork. Projecting the 3D nonlinear equations onto this set of
ferential equation§ODE’s). Such a reduced system indeed eigenmodes, a reduced system of five ODE's is found. Dis-
provides information on the possible bifurcations. Thesdinguishing between main and slaved modes, the system can
equations are generally obtained by a Galerkin approximabe further reduced to three ODE’s. This system is character-
tion, i.e., by projecting the original equations onto a set ofized by two nontrivial fixed points, which correspond to the
basis functions. However, the best choice of basis functionk andH state mentioned above. The stability of these fixed
is not always obvious. Even if the set of linear eigenmodesgoints, which depends on the normalized dissipation and the
seems to be a natural choice, the number of functions thavolution to a limit cycle representing an oscillating state,
have to be kept is not a trivial matter. Here, we propose agrees well with the results of the simulations.
numerical method using a proper orthogonal decomposition The remainder of the paper is organized as follows. In the
(POD) [1,2]. This method is appropriate when full numerical second section, we present the physical model, the linear
simulations(or experimental measurementsf the dynami-  stability properties of the corresponding dynamical system,
cal system exist. A POD analysis provides a set of eigenvaland the numerical simulations in the nonlinear regime. The
ues and associated space- and time-dependent eigenfuribird section is dedicated to the POD analysis, the construc-
tions. The spectrum of eigenvalues is used to determine thigon and the discussion of the low-dimensional model. Con-
accuracy in the cutoff and the space-dependent eigenfunclusions are presented in the fourth section.
tions are used for the Galerkin projection.
The method is illustrated by studing a three-dimensional

(3D) resistive ballooning plasma fluctuations in a tokamak. Il. NUMERICAL SIMULATIONS
The model describes a convective dynamics and belongs to a A Model
large family of fluid systems including Rayleigh-B&rd con- '
vection [3]. Numerical simulations show that two possible  For the simulation of plasma fluctuations in a tokamak,
steady-states exist close to the instability threshold. One statge use a reduced magnetohydrodynami@dHD) model
corresponds to a finite level of fluctuations and no globalthat follows from the resistive MHD equations taking into
flow. The second state is characterized by a reduced fluctu@&ccount that fluctuations are nearly aligned along magnetic
tion level and a self-generated sheared flow. The dynamicfield lines (flute approximatiorkj<k,) [9]. The model de-
involving these two states has been already analyzed elsecribes resistive ballooning fluctuations, and, for small
where and it has been proposed as a paradigm for thmv ~ plasma pressurgp&B?/2u,) and small inverse aspect ratio
confinement to H (high confinementtransition in a toka- (a/R<1), it consists of two field equations for the vorticity
mak[4,5]. In a more unstable situation, oscillating states areand pressure fluctuations. The normalized form of these
also observed. Performing a POD analysis of these numericalquations is
simulations, it turns out thahe dynamics is dominated by d
m/cc)edrg;deand thathese modes are close to the linear eigen &fob: _Vw_ Gp+ VViqi?, 1)
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dp B. Linear stability

v
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ay +x Vip+x.Vip.

@ 1. Analytic calculation of ballooning modes

The toroidal curvature of field lines causes harmonics
Here,d/dt=d/dt+{¢,-}, where the Poisson bracket repre- (m,n) to couple linearly to their neighborsn=1,n) and to
sents the convection due to the domin&k B flow; the  form global modes that have a large radial extent. In the high
normalized electrostatic potential represents a flux func- toroidal wave-number limiti{>1), the growth rate and the
tion of the flow. In this MHD model, diamagnetic effects and radial envelope of such modes can be calculated analytically
magnetic fluctuations are not implemented. Of course, for & the ballooning approximation. For each toroidal mode
complete simulation of plasma turbulence in a tokamakhumbern=:1/e, the main harmonicr(gy,n)=:(mg,n) is
more sophisticated models have to be ufk@,11. How-  separated,
ever, the present simplified model allows the understanding
of basic dynamic processes at the plasma edge. Note that this 3)
is a convective model close to other systems used in fluid
dynamics, e.g., in 20i.e., V|=0), Egs.(1) and(2) are ex- Where®=(—i¢,p) and the amplitude varies only slowly in

= (x,y)expimor,y—ink,z+ y),

actly those for Rayleigh-erd convection wher& is pro- the poloidal direction relative to the main harmonic, i.e.,
portional to the gravity{3]. The 2D version has also been
investigated irf9] using a center manifold approach.

The magnetic field in toroidal coordinatesEE@zB(P[é‘P
+r/(Rq)é9]. For the purposes of implementation, normal-

ized slab coordinates are introduced in the vicinity of a ref-

erence surface=r,

r—ro _Roe

7= LS,

where the perpendicular length scélés typically a few ion
Larmor radii and the shear length; is of the order ofR,.
Time is normalized to the interchange time. x|, x, are

|ad/ay|/|mor,®|~ €. Equations(1) and (2) are linearized
and a Fourier transformation

- 1 (»
bixy)= | dedikoyening @

is applied in the radial direction. Following the presentation
in [6—8], a subsequent coordinate transformation

vy

k;:kx_ dO )

0'= 0=y, (5)

is performed. If only the dominantef) terms are kept, this
leads to the eigenvalue problem

the normalized viscosity, parallel and perpendicular heat
conductivity, respectively. A detailed description of the nor-
malization is given if12].

For the safety factog(r) a linear approximation of &§/is  where
used and the resulting normalized parallel gradient is given

y®=Ly(0',60)®, (6)

by 1 MoKy
- 1|5 o) & -k
L0:_2 kl _,2 kL
A L A *\ 0 0 mory  — x. K2
” az quO ay X” 0 y Xl L
and
wherek,=§&/rg and k,=Lg/r.
The ballooning instability is driven on the low field side 2.0 _ (0" —6p)° )
by the combination of the pressure gradient and the toroidal KL(0",60)= d2 +(Moky)®,

curvature of the field lines. The latter emerges from the op- 0

erator g(0’,60)=cog6')+ (68" — 0y)SeSin(6’).

So=0o/ K is the shear and,= 1/(myxySy) is the normal-
ized distance between resonant surfaces. The problem has
essentially been reduced now to one dimension with the vari-

: . o able 6= —dgk, as a parameter which is called the balloon-
As we will see below, the instability presents a threshold. Ining angle. Obviously, the growth rateis periodic ind, and

fameter Note hat due 1 our normaization, tis pararmeter {45 Ot 10 be maximal aty=0,2m 41, . .. The de-
.' . P pendence of this maximal value of on the poloidal wave
proportional to the mean pressure gradient length. ; -
. g . numbermg is shown in Fig. 1 for two sets of parameters.
The variablesp, p are expanded in a Fourier-mode rep- For each eigenvalug(8,), the problem(6) is solved b
resentation in the poloidal and toroidal directions, o 9 ) #0), } pr ead by
an infinite set of eigenfunctionsb[6’,0y+ 27 ]=Pd[ 6’

é —2ml,0q]. Therefore, the most unstable periodia 6’
M

) J d
G= sin(kyYy) x + cog kyY) @.

= #) solution of the linear problem to lowest order can be
constructed in the following way:

>

m,n

explime,y—ink,z).

(¢mn(x,t)
pmn(xut)
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FIG. 1. Linear growth rates ofnfy,n) modes in the lowest
order ballooning approximation fog=1, v=x, =2 (boxes, and
v=x, =4 (crosses Dashed lines indicate the growth rates of the  FIG. 2. Contour plot of the potentiab of a n=18 ballooning
correspondingn=6,12,18,24,30 ballooning modes obtained by amode radially localized in the regione [Xq—»;Xq=3] in the poloi-
numerical resolution of the complete eigenvalue problem. dal planez=0. (The vertical axis on the left represents the main

axis of the torug.Here,v=y, =2.

D(O',00)= 19o)|_20c D(0'—2ml,60). As for the solution in zeroth ordé®), the radial structure of
- each Fourier component is characterized by the Fourier

The back-transformation of Eqs(3)—(5) results fory  transformation of the functio(«,y,0). However, in(9),
e[—mlky;ml k], a slowly varying envelope is superimposed which captures

the radial localization of the mode.
A linear eigenmode is therefore a combination of several

1 . . X .
d= q)(Kyy,O)eXF{le Mo+~ |y~ Nk Z+ V(O)t] Fourier modes with the same toroidal wave numbend
\ 27Td0 0

different poloidal wave numbens. It has a much broader
This solution can be written in a Fourier series radial profile than one single Fourier mode. These are the
' characteristics of the so-called global modes.

P

1 ~ X
- 2mdy % }—(D(d_o_'u

exgi(mg+ ) kyy 2. Numerical computation of global modes

As we can see from Fig. 1, the most unstable resistive
—inkz+y(0)t], () ballooning modes are those with low toroidal wave numbers
) _ ) . n. For these modes, we do not expect the first order balloon-
where the radlgl structure of ea}ch Fourier modg is descrlbeﬁgg approximation to give quantitativly good results, and we
by the Fourier transformation of the eigenfunction yherefore solve the eigenvalue problem numerically. The re-
®(xyy,0), which is typically Gaussian-shaped. However, sulting maximal growth rates are given in Fig. 1. In Fig. 2,
the global modg7) is not localized in the radial direction, we show a contour plot in a poloidal plane of the potential

i.e., all Fourier modes have the same amplitude. To capturfyr a typical eigenmode. Because the toroidal curvature is
the localization of the mode, one additional order must b&infavorable on the low field side of a torus, the mode am-

retained in the ballooning approximation. plitudes are much larger in this region relative to the high
The eigenvalue problem up to the ord€rcan be written  field side. This is why these modes are called “ballooning”
in the form modes.
, i , ) ) In order to present the radial structure of such a mode
[Lo(y,6",60) +i€La(y,6",60) + €Lo(y,60",60) ] =0, with a given toroidal wave numbem, we plot the radial

profiles of the different Fourier modes involved with
... =2n...3n in one graph. For a typical case, the result is
\évSfég' tgeévserrozi::rr:Sstshé)zilgz\ilvnﬁees't&eg]rzzrbgggr;z;(n;lIg/, ,Iggo plotted in Figs. &) and 3b) for the m_ost unstable and the_
~ D oa second most unstable mode, respectively. The corresponding
:=Ly— 1y, the solgtmnﬁb(& ,601)/, and the growth rateq(6o) growth rates arey;=2.9x10 2 and yy=—4.6xX 103, re-
around 6p=0 with 6,=0(e™), a solution of the two- spectively. For the first mode, each Fourier component has a
dimensional eigenvalue problen®) in the vicinity of o 6w profile which is approximately Gaussian and is local-
®o(0',600) and yo(0) can be constructed. The detailed cal-ized at one radial position given by the resonance condition
culation is presented in the Appendix. The result is q(x)=m/n. The amplitudes of the different Fourier modes
are determined by a broad radial envelope which is also ap-
b 1 2 ox _X_2 P (__ ) proximately Gaussian. This structure is qualitatively well de-
mdo m 2ad§ %l d, scribed by the analytical expressi@8). The second most
unstable mode has an odd envelope profile, which can be
Xexfiky(Mo+ w)y—ink,z+(yo(0)+ y)t]. (9) analytically approximated by the second unstable solution of
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Lr o1 FIG. 4. Time evolution of the volume-averaged kinetic energy
n=0,

of the fluctuations close to the onset of instability<x, =4.5).

05 ¢ width A outside the intervallXq- »;Xq-3]-

The aspect of local flattening of the mean pressure gradi-
ent due to turbulence and its implications regarding transport

0 — dynamics is not discussed here. Therefore, the retroaction of
W the electrostatic fluctuations on the pressure profile are ex-
0 30 X

cluded in the simulations. This is done by neglecting the
nonlinear term in the evolution equation p§,. Further in-
vestigations show that by removing this constraint and by
driving the instability by a constant flux, an intermittent
transport with bursts can be observed in the 3D simulations
[13], similarly to the results presented in R¢L4] for 2D
interchange turbulence.

As usual, starting with some small-amplitude white noise,

. . the numerical simulations show an exponential growth of
Eqg. (A3). Note that the Fourier mode localized near the knot P g

of the envelope function also has an odd profile that can b8otent|al and pressure fluctuations and the achievement of a

described by a second unstable solution of the zeroth Ordé}onl!r_\ear sgturated _stat_e. !n a case (?Iosg to the onset of in-
problem(6). stability, this behavior is illustrated in Fig. 4, where the

volume-averaged kinetic energy of the fluctuation$
=((9x¢>)2+((9yqb)2 is plotted versus time. Note that in this
C. Simulations in the nonlinear regime case, a contribution of then(;n)=(0,0) component associ-

We now have identified the structure of the linear globalateol With an equilibriu_m electric field and an equilibrium
modes characterized by a coupling of several Fourier mode4elocity of the plasma is not observed.
over a broad radial domain. The fundamental question that This situation changes when we lower the control param-
naturally arises is the role of these modes in the presence 6fer going to a more unstable case. Now, as illustrated in Fig.
nonlinear coupling. We will address this question in the nex®, a significant contribution of ang,n)=(0,0) component
chapter. First, we will describe the important nonlinear phe-develops. In the velocity fieléd =e,x V ¢, this component
nomenon of shear flow generation captured by our model. corresponds to a sheared poloidal rotation

Each Fourier mode is localized at a resonant surfgace
=m/n determined by a vanishing parallel gradient. Since we
want to study the interaction of ballooning modes at the 08 r
plasma edge, the simulation region is restricted to the do- <v2>
main between theq=2 and q=3 surfaces. Only those
modes that are resonant in this interval are considered, up to 061

toroidal mode numben=30. In order to restrict the number

of modes we have to deal with in the 3D simulations, we 04 WAN%W
only include toroidal mode numbers nt=0,6,12,18. .. in '

the code. This does not represent an essential restriction be- <V3>
cause due to the axisymmetry of the geometry, there is no 02+

linear coupling between modes with different toroidal wave
numbers. The nonlinear coupling is resolved by taking into
account all modes with a given difference in toroidal wave 0
number An=6). In the radial direction, finite differences

are used and all fluctuations are extrapolated to zero at aFIG. 5. Same as Fig. 4, in a more unstable case ¥, =3.5).

05 F

-60 -30
FIG. 3. Radial profiles of Fourier modes involved in the real

part of the potential of the most unstabl¢.( s and second most
unstable ¢,-¢1) n=6 ballooning modes fog=2, v=y, =3.5.

0 2000 4000 t
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d
Vo(x,t) = 2 oo 1) 10

of the plasma. Because then(n)=(0,0) mode is linearly 10°F .,
stable, the generation of shear flow must be a nonlinear phe-
nomenon. In the following, we will address the question of oo
the relevant modes in this process and we will analyze their 0 |
mechanism of interaction leading to the self-generation of oe
poloidal rotation by the fluctuations. Note that in the pres-
ence of the shear flow, the level of turbulence is reduced. A o
simulation in which the ih,n)=(0,0) component is artifi- 107 ¢
cially suppressed leads to a 28% higher fluctuation level for , , ,
the same parameters. 0 10 20 30 40 1

FIG. 6. First weights of the POD.
Ill. LOW-DIMENSIONAL MODEL

A. Proper orthogonal decomposition than 1% of those of the equilibrium part. The latter is shown
in Fig. 8. Obviously, the radial profile has a minimum near

=0. Therefore, the corresponding flaid0) is in opposite

irections at the inner and outer regions of our simulation

In order to identify the structures relevant in the proces
of shear flow generation, we apply the proper orthogona
decomposition(POD) method[1,15] to a time series ob- domain(sheared flow
tained from the numerical simulation illustrated in Fig. 5. Aq can be seen in Fig.(B), the second important mode
Therefore, the real part of the Fourier components of thq| _ 1) oscillates periodically in time. Its spatial structure is

potential Rey(x;,tj) is sampled at subsequent times yominated by the=6 parts: each contribution with toroidal

t1, ...ty @nd the data is assembled ifNa<M mafmxd)fff, wave number different from 6 is less than 4%. In order to
wherek=1...M covers all spatial indicesnf,n,i). M is resent the structure of this mode, we plot the radial profiles
given by the number of Fourier modes times the number Ot the contributions of the different Fourier modes with
radial grid points. =6 andm=2n...3n in one graph. The result is shown in

The POD consists in expanding the discrete data into &g 9. |t strongly resembles the linear eigenmode presented
unique set of modes that are orthonormal in time and spaceg, Fig. 3a.

L-1 The third and fourth important modes in the POD (
q,ij(: > WA () FiL(m,n,i)], =2,3) show a quasiperiodic behavior in tirffégs. 1c) and
=0 7(d)]. Their spatial structures are dominated by combinations

of n=6 andn=12 parts shown in Fig. 10 fdr=2 and Fig.

where L=min(N,M). The base functionsA(t;) and 11 for I=3. Each other contribution is less than 0.6% in
Fi[(m,n,i),] are eigensolutions of the two-point temporal amplitude. Here, tha=6 parts strongly resemble the second
and spatial cross correlation matrices, respectiV&B). The  unstable global mode presented in Figh)3Then= 12 parts
series is sorted in decreasing weight, X order. Coherent are also governed by the corresponding global modes.
structures that are highly correlated in time or in space ap- We therefore conclude that the modes relevant in the pro-
pear in heavily weighted components. cess of shear flow generation revealed by the POD of our

Evaluating the contributions of the different Fourier nonlinear simulations are determined by the linear global
modes in the simulation, we see that only a fraction 0f0 modes. Especially, we identify the five most important
of the total energy is contained in the modes with toroidalmodes, which are the most unstable global modes with
wave numben>18. In the POD, we therefore consider only =0,6,12 (labeled by the indices 0, 1, and 2, respectively,
Fourier modes up tm= 18, which gives a total number of below) and the second most unstable global modes with

3360 sampling points in the spatial directi¢#0 Fourier =g 12(labeled land 2 respectively. In spite of analyzing a
modes times 84 radial grid pointdn the time direction, the  sjtuation close to the threshold of instability, this is not an
signal is sampled at 500 points in the saturated state showshvious result, because the linear global modes are large

in Fig. 5 fromt=4000 tot=5000. The values of the first 50 scale structures which we expect to be sensitive to the non-
weights are plotted in Fig. 6 on a logarithmic scale. Appar-inear coupling.

ently, the importance of the modes decreases rapidly with
increasing weight order.

The temporal behavior of the first four modes is shown in
Fig. 7. The first modelE=0) has a nearly constant ampli-  The preceding analysis indicates that the system can be
tude. Some very small oscillations around the mean valuéescribed by a low-dimensional model. We will now con-
reproduce the oscillations observed in the saturafiég. 5.  struct such a model for the dynamics of the amplitudes of the
We therefore associate this first mode with the equilibriumrelevant modes that we have identified in the last section.
part of the signal. This identification is also supported by theThis low dimensional system should describe the mecha-
spatial structure of the mode that is completely dominated byisms of interaction of these modes in the process of shear
the (m,n)=(0,0) part. The amplitudes of the radial profiles flow generation and fluctuation reduction.
of all contributions with (n,n) different from zero are less The evolution equation&l,2) can be written in the form

B. Galerkin projection
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FIG. 7. Temporal behavior of the first four POD modes.
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We construct a one-field equation that captures the main fea-

where the linear operatdr, is such that its eigenvalues are
those of the operatdr in Eq. (11) and the eigenvectors are
close to the global modes. We approximate these modes by

$bo=BoF(X),

tures of Eq.(11), i.e., the same linear stability and the same

nonlinearity for the potential

J 2 2
G Vi6=Lad {6,V 41, (12

Fo.n=0

-10 F

-40 -20 0 20 x
FIG. 8. Radial dependence of the dominant,i§) =(0,0) part
of the most important POD mode.

$1=B1>, F(X)F ,(x)expi[(my+ ) 6—nel+c.c.,
o

$1=iB1>, XF(X)F ,(x)exp[(mo+w)6—nel+c.c.,
o

2 | '
Fj n=6

0 = e N

-40 20 0 20 x

FIG. 9. Radial profile of Fourier modes involved in the domi-
nantn=6 part of the second most important POD mode.
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FIG. 10. Radial structures of the dominant6 (a) andn=12
(b) parts for the third most important POD mode.
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FIG. 11. Same as Fig. 10, for the fourth most important POD

mode.
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$,=B,>, F(X)F ,(x)exp A[(my+u)6—nel+c.c.,
M

$7=1B3>, XF(X)F ,(x)exp A[(mo+ u)6—nel+c.c.,
w

where

B x2 B (x— ud)?
F(x)—exp( E) FM(x)—exp{ o

and

1 d d
2_ 2_p2_ 2_p2—
BO_x/ZTrL, BB oaw BB

Here, w represents the radial width of the Fourier modes
involved in the global modes ardis the width of the enve-
lope. The normalization is such théd; ,¢;)=&; with the
standard scalar product.

Using the Galerkin approximation

d=aghotaidtatdrtazd,+azd;

in the evolution equatiofil2) and multiplying by each of the
modesd; reveals the amplitude equations

ao= y0a0+ C(l)Talaf+ C(Z)Eaza;, (139
a,=y,a,+ C%aza;+ C2aja, + Cl2a,ay,  (13H)
a;=yiar+ Craga, + Ci a,a,+ C%vzapz, (130

ay= ya,+ ngaoafr C%Talaf, (130

az=yzaz+ Cy apa,+ C5 ai+ cgla%, (130

where the coefficients are given by
Cl=aj( i 10 VIt +{d. V2 b))

and aj=1-9; /2. Note that we only specify the nonzero
coefficients; other coefficients are vanishing due to symme-
try. The only nonvanishing coefficients in the evolution
equation forag that correspond to the amplitude of the shear

flow are Cj' and C3?. This means that the only effective
coupling for shear flow generation is given by the interaction
of the most unstable global mode with tekecondmost un-
stable global mode with the same toroidal wave number
Therefore, we expect the shear flow generation to set in
clearly above the instability threshold, when the second most
unstable global mode is only weakly damped. This is in
agreement with the numerical simulations shown in Figs. 4
and 5 and was also found in the detailed analysis of shear
flow generation in 2D interchange turbulence in Réi.
Calculating the coefficients leads to
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C(2)5= ZC(lJT, ag,a;,87~€, 8,8~ €
B L 22 2 m2d2 Additionally, we use an argument usually appliedgener-
c¥%=—|1+6 i w Mo D, alized center manifold reductionf9] which states that the
rad? 2L2  3L2 dynamics of the stable modes is governed by the dominating
modes, i.e., the first are “slaved” by the latter. In order to
o w2 9 L2 w2 mgdz further simplify the amplitude equationd3), we assume
Ci=|1+ 2 22|\t 2T 2 , that modes 2 and Play the role of the slaved modes pro-
rod L L . , . o .
viding an energy sink. Accordinglyy, and y; are negative
- 5 and the amplitudes,,a; are functions ofagy,a;,a;. As-
cl2=| 1+ —|D suming that the slaved modes relax rapidly to the amplitudes
! L2) determined by the dominating modes, we can calculate this
functional dependence froifi3d, 13¢ by setting the time
aw? L2 w2 mad?\ | _ derivatives to zero and solving fa, anda;, respectively.
Cr=|1-—+6 5 —t— : Settinge=w?/L2~L?/r3, the result is
2 rgd? 2L2 3L
D
cl? w? 9 L2w? w?  mgd? a= _zmala?" O(€%),
= +— —+
1 1 LZ 2 r(2)d2 1 LZ LZ !
D
- W2 a5=—|—a§+0(e3).
CT = 2? D, Y2
Using these expressions (b3a—13¢, we obtain a simplified
ngz ZCOT system of amplitude equatiofnseglecting terms of order*)
- w2 ay=— €y0ao+ €yoa1a1, (143
Cil=—2[1+ e D,
~ ~ ~ ~_ ~2;- ~
a; =y —aga;— viaja; — v,a3, (14b)
02_ ,~01
Cy=2C, o e o
apy=—ya +apa; — riaay, (149
11 12
C;=-Ci%,
2 1 where
— w2 ~ ~
ct=-2"p €y0=~7>0, vy1=-v1>0,
2 Lz !
D? % D? &
where ,,1:~_2ﬁ, szTzﬂ,
D2 [yl 2D2 | 5]
4m0d1/2 ~ 31/27T1/4\N1/2
) TS D= 914412 D. and
: . . - . 2D _ 2D
Note that the energy conservation of the quadratic nonlin- a,=Da,, a——a,, aj=——aj.
earity is verified by \ /;’o \ /;’o

1 1, ~01
Cg'+Cit+Cy =0, The system(14) has two nontrivial fixed points. The first
L one, for which there is no shear flow, is given by
C22+CH2+C5°=0,

T =0, =2, =0
Ci*+C +C3'=0, V2
3 11 It corresponds to the state. For a low enough dissipation, so
C1°+C5; =0, that
12 | ~11_ P
CI +C;=0. ﬂ> Y1 ~0, (15
Vo 1_1/1

As we have seen, the POD of the fluctuating data from the
numerical simulation reveals that the weights of the modeshis state is unstable and the system evolves to a second fixed
are strongly decreasing with increasing weight number. Weoint with nonvanishing shear flow and reduced fluctuation
therefore apply the following scaling to the amplitudes: level (H state,
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0.6 ' ' This bifurcation behavior is in agreement with the observa-
tions in the numerical simulations of the full dynamical sys-
tem.

n \ m Note that if we assume that the modéslslaved(instead

04

of dominating and of the orde? (instead ofe), a simpli-

fied system of equations for the amplitudgsanda, can be
constructed in the same way as presented above. This system
is close to the one obtained in Rg#] by a statistical analy-
R E [ ) sis in the case of strongly developed turbulence which was
J J presented as a paradigm for low to high+) confinement
u u transition. However, this system does not reproduce the in-
0 2000 2000 T a0 stability of theH state and the evolution to oscillating states.

02

0.2

-0.4

FIG. 12. Typical solution of the low-dimensional systéial).
The parameters arey,=—0.001, y,=0.03, y;=-0.005, v,

=4v,, andv,=0.1. IV. CONCLUSION

In this paper we applied a synergetic method to study
~ ~~ o~y VT nonlinear dynamical systems close to a stability threshold. It
Bo=&dr, AT consists of a combination of a POD and a subsequent Galer-

kin projection. The POD reveals the relevant modes in the

_ dynamical process considered, while the Galerkin projection

Y1 Y1 provides a corresponding low-dimensional model. We illus-
o : trated the method using the process of shear flow generation

in a 3D plasma dynamical system. The method can in prin-

ciple be used to investigate a large family of models. Indeed,

ae dynamical system describing resistive ballooning fluctua-

§fons in a tokamak belongs to a large class of convective

fluid systems including Rayleigh-Bard convection.

Numerical simulations were performed and a POD of the

fluctuating signal showed that there is a small number of
yi 7 ) YT relevant modes. These modes are close to the linear modes.

pra—
1 1+ V1

Vo 1- V1

Considering the linear stability problem of this fixed point,
the leading terms of the eigenvalues can be easily calculat
(two of them are of order one, the third is of order The
result is that theH state becomes unstable for

2
2V1
1+ V1

This is not a trivial result because the linear eigenmodes
have a large radial exteriglobal modes and are therefore

.. . expected to be modified by the nonlinear coupling. The low-
It can be shown that due to the presence of the dissipatiVgimensional model deduced by a Galerkin projection gov-

terms, the solutions of the syste(@4) are bounded. The oihg the main features of shear flow generation, turbulence
PoincareBendixson theorenffor details see, e.gl16]) then  oqction (-H transition, and the existence of oscillating

implies that in the case where the two fixed points are Unggtions, It reproduces qualitatively the main properties of
stable, the amplitudes evolve to a limit cycle, i.e., the systemy o 41l numerical simulations.

shows an oscillatory behavior.

For a typical set of parameters,/y;=6 and y,/vs
=2v,/v,=1/2, the following scenario appears when lower-
ing the control parameter,: TheL state becomes unstable at
v,=0.24. Below this threshold, the system evolves totthe Here we present the calculation of the linear eigenmodes
state. The latter is stable up te,=(47+7./41)/400 including the first order in the ballooning approximation. The
~0.2296. For lower values of the dissipation, oscillating so-operatord.; andL , appearing in the eigenvalue problé&)
lutions are observed. A typical example is shown in Fig. 12are given by

Vo 1_7/1 1_7}1.

APPENDIX

2(Mok,y)? _ Moky cog 6’)

2 | = 0) ¢ o 1 (y+2vk?) d
L= k? — 2 - k? —+—,
MoSa 969'2 90y Mg ) 30" 9o
0 X —Mpky 2(mOKy) X1
(Moky)?
L %{wzy[kﬁz(moky)zj} 0 0,0 2
2 m? - 96" b

0 (mOKy)ZXL
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Note that|¢/p|~e€, v,x, ~ €, and for consistency with the

linear approximation in the safety factor, the contributions of

the second and higher order

in Rd€qox)/(rolLs)

=x/(mgydg) have been neglected in the parallel gradient. The

lowest order problem(6) is represented by (®q(6’',60)

=0. The most unstable soluticffno(e’ ,0) turns out to be an
even function of#’. Additionally, Eg. (8) implies that its
solution has the same parity # and 6,. Therefore, sepa-
rating a slowly varyingin 6,= €?6,) amplitude and devel-
oping the remaining factor in a series arouig=0, the
lowest order solution can be written as

).

Developing the growth rateyy(6,) and the operator
Lo(y,0',6,) around 8,=0, the lowest order equation be-
comes

Z(I)O

Do(6',00)=A(6, 6',0)+ = ——
ol o) (6g)| @ ( )+ (903

7D,

|o<Do(6” 0)00+— Lo(70(0),6",0)
963

oL
+(—°
Jy

0

9L,

65 |

d270
2
70(0) 460

&)o(a',O)]Tegz
0
(A1)

We now look for a solution of the two-dimensional eigen-

value problem(8) in the vicinity of ®,(8’,6,) and y,(0),
D(0',00)=Do(0',00)+ €D (0", 00)+ D6, 60),
y="75(0)+ "%y, + €y,.

Developing Eq(8) and using Eq(Al), we find

Lo(70(0),0",0)(e"?® + ed,) +

za+(y

1 d2,y0

2.de3 | "

dlo
dy

3177 Ly

+iel,+ie iy,

’Yo(o)

)’o(o)

+ esz] A(6y)Do(6',0)+0(¥?=0,

where we have assumed even parity dor and ®, as for
®,. Multiplying by the adjoined functiomb (¢’,0) and in-
tegrating in @’ yields at orderse’? and e the solvability
conditions

P. BEYER, S. BENKADDA, AND X. GARBET
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- ~dA
’le0A+|C1T:O, (AZ)
déy
~  1d%y| ~ d?A
————| %2 |CoA+C,—= =0, A3
(72 2.2 |, °) 7" T de2 ")
where
Co= j_mde'@awﬁaﬁo),
- 2(mgky)2.. ?
Ci=—| do'{ ——— 0)+d3
1 Mo = [ kf ¢ ( ) 0
o~ s{o),. - ~
+2vk? | o+ imoky| ——bg Po— Pg o
L
(92
(mOKy) Po XHdo 902 + XL po )
1
Co=—— | d‘g {( o) o {70(0)+2v[k?
mo J_

+ 2(moKy)2]}Zf>o+ (moKy)zlegE)o

wherek, has to be evaluated #,=0. It turns out thatC,

<C, and therefore from EqA2) y;~0. This has been used
in Eqg. (A3). The most unstable solution of the latter is

A(6y) = exp( —%T?é) ,

where

Co dz)’o
2C; de? o

~2_ —
a = ) Y2=

A solution of Eq. (8) which is periodic inf’=#6 can be

constructed,

o

o ~
5 05>|2_m Do(60' —2l,0),

@(0,,60): ex%
wherea=a/e. The back-transformation of Eq&)—(5) for
ye[—m/«ky ;7 k] gives the resul(9) presented in the main
part of the paper.
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