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Proper orthogonal decomposition and Galerkin projection
for a three-dimensional plasma dynamical system
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A general method by which to investigate nonlinear dynamical systems close to a stability threshold is
presented. This method combines a proper orthogonal decomposition and a subsequent Galerkin projection.
This technique is applied to three-dimensional resistive ballooning plasma fluctuations in a tokamak. The
corresponding dynamical system belongs to a large family of convective fluid systems including Rayleigh-
Bénard convection. A proper orthogonal decomposition of the fluctuating signal obtained by numerical simu-
lation shows that the relevant modes are close to the linear~global! modes. The Galerkin projection provides
a low-dimensional system that allows the study of shear flow generation, its subsequent fluctuation reduction,
and the evolution to oscillating states.

PACS number~s!: 52.35.Ra, 52.35.Py, 47.27.Eq, 52.35.Mw
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I. INTRODUCTION

Nonlinear dynamical systems close to a stability thresh
are often investigated through reduced sets of ordinary
ferential equations~ODE’s!. Such a reduced system indee
provides information on the possible bifurcations. The
equations are generally obtained by a Galerkin approxi
tion, i.e., by projecting the original equations onto a set
basis functions. However, the best choice of basis functi
is not always obvious. Even if the set of linear eigenmod
seems to be a natural choice, the number of functions
have to be kept is not a trivial matter. Here, we propos
numerical method using a proper orthogonal decomposi
~POD! @1,2#. This method is appropriate when full numeric
simulations~or experimental measurements! of the dynami-
cal system exist. A POD analysis provides a set of eigen
ues and associated space- and time-dependent eigen
tions. The spectrum of eigenvalues is used to determine
accuracy in the cutoff and the space-dependent eigenf
tions are used for the Galerkin projection.

The method is illustrated by studing a three-dimensio
~3D! resistive ballooning plasma fluctuations in a tokam
The model describes a convective dynamics and belongs
large family of fluid systems including Rayleigh-Be´nard con-
vection @3#. Numerical simulations show that two possib
steady-states exist close to the instability threshold. One s
corresponds to a finite level of fluctuations and no glo
flow. The second state is characterized by a reduced fluc
tion level and a self-generated sheared flow. The dynam
involving these two states has been already analyzed e
where and it has been proposed as a paradigm for theL ~low
confinement! to H ~high confinement! transition in a toka-
mak @4,5#. In a more unstable situation, oscillating states
also observed. Performing a POD analysis of these nume
simulations, it turns out thatthe dynamics is dominated b
five modesand thatthese modes are close to the linear eige
modes.
PRE 611063-651X/2000/61~1!/813~11!/$15.00
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The latter point is not trivial in the sense that linear eige
modes are not simple in tokamaks. The determination
these modes, called ‘‘global modes’’@6–8#, is part of this
work. Projecting the 3D nonlinear equations onto this set
eigenmodes, a reduced system of five ODE’s is found. D
tinguishing between main and slaved modes, the system
be further reduced to three ODE’s. This system is charac
ized by two nontrivial fixed points, which correspond to th
L andH state mentioned above. The stability of these fix
points, which depends on the normalized dissipation and
evolution to a limit cycle representing an oscillating sta
agrees well with the results of the simulations.

The remainder of the paper is organized as follows. In
second section, we present the physical model, the lin
stability properties of the corresponding dynamical syste
and the numerical simulations in the nonlinear regime. T
third section is dedicated to the POD analysis, the const
tion and the discussion of the low-dimensional model. Co
clusions are presented in the fourth section.

II. NUMERICAL SIMULATIONS

A. Model

For the simulation of plasma fluctuations in a tokama
we use a reduced magnetohydrodynamical~MHD! model
that follows from the resistive MHD equations taking in
account that fluctuations are nearly aligned along magn
field lines ~flute approximationki!k') @9#. The model de-
scribes resistive ballooning fluctuations, and, for sm
plasma pressure (p!B2/2m0) and small inverse aspect rati
(a/R!1), it consists of two field equations for the vorticit
and pressure fluctuations. The normalized form of th
equations is

d

dt
¹'

2 f52¹ i
2f2Gp1n¹'

4 f, ~1!
813 ©2000 The American Physical Society
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dp

dt
52

]f

]y
1x i¹ i

2p1x'¹'
2 p. ~2!

Here,d/dt5]/]t1$f,•%, where the Poisson bracket repr
sents the convection due to the dominantEW 3BW flow; the
normalized electrostatic potentialf represents a flux func
tion of the flow. In this MHD model, diamagnetic effects an
magnetic fluctuations are not implemented. Of course, fo
complete simulation of plasma turbulence in a tokam
more sophisticated models have to be used@10,11#. How-
ever, the present simplified model allows the understand
of basic dynamic processes at the plasma edge. Note tha
is a convective model close to other systems used in fl
dynamics, e.g., in 2D~i.e., ¹ i50), Eqs.~1! and ~2! are ex-
actly those for Rayleigh-Be´nard convection whereG is pro-
portional to the gravity@3#. The 2D version has also bee
investigated in@9# using a center manifold approach.

The magnetic field in toroidal coordinates isBW 05Bw@ êw

1r /(Rq)êu#. For the purposes of implementation, norm
ized slab coordinates are introduced in the vicinity of a r
erence surfacer 5r 0,

x5
r 2r 0

j
, y5

r 0u

j
, z5

R0w

Ls
,

where the perpendicular length scalej is typically a few ion
Larmor radii and the shear lengthLs is of the order ofR0.
Time is normalized to the interchange time.n, x i , x' are
the normalized viscosity, parallel and perpendicular h
conductivity, respectively. A detailed description of the no
malization is given in@12#.

For the safety factorq(r ) a linear approximation of 1/q is
used and the resulting normalized parallel gradient is gi
by

¹ i5
]

]z
1S kz

kyq0
2xD ]

]y

whereky5j/r 0 andkz5Ls /r 0.
The ballooning instability is driven on the low field sid

by the combination of the pressure gradient and the toro
curvature of the field lines. The latter emerges from the
erator

G5 sin~kyy!
]

]x
1 cos~kyy!

]

]y
.

As we will see below, the instability presents a threshold.
our simulations, we fixx i and usex'5n as a control pa-
rameter. Note that due to our normalization, this paramete
proportional to the mean pressure gradient length.

The variablesf, p are expanded in a Fourier-mode re
resentation in the poloidal and toroidal directions,

S f
p D5(

m,n
S fmn~x,t !

pmn~x,t ! Dexp~ imkyy2 inkzz!.
a
,

g
his
id
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t
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n
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n
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B. Linear stability

1. Analytic calculation of ballooning modes

The toroidal curvature of field lines causes harmon
(m,n) to couple linearly to their neighbors (m61,n) and to
form global modes that have a large radial extent. In the h
toroidal wave-number limit (n@1), the growth rate and the
radial envelope of such modes can be calculated analytic
in the ballooning approximation. For each toroidal mo
numbern5:1/e, the main harmonic (nq0 ,n)5:(m0 ,n) is
separated,

F5F̂~x,y!exp~ im0kyy2 inkzz1gt !, ~3!

whereF5(2 if,p) and the amplitude varies only slowly i
the poloidal direction relative to the main harmonic, i.
u]F̂/]yu/um0kyF̂u;e. Equations~1! and ~2! are linearized
and a Fourier transformation

F̂~x,y!5
1

A2p
E

2`

`

dkxF~kx ,y!exp~ ikxx! ~4!

is applied in the radial direction. Following the presentati
in @6–8#, a subsequent coordinate transformation

u85u5kyy, kx85kx2
kyy

d0
, ~5!

is performed. If only the dominant (e0) terms are kept, this
leads to the eigenvalue problem

gF5L̃0~u8,u0!F, ~6!

where

L̃05
1

s0
2 S 1

k'
2

0

0 x i

D ]2

]u82
1S 2nk'

2 m0kyg

k'
2

m0ky 2x'k'
2
D

and

k'
2 ~u8,u0!5

~u82u0!2

d0
2

1~m0ky!2,

g~u8,u0!5 cos~u8!1~u82u0!s0 sin~u8!.

s05q0 /kz is the shear andd051/(m0kys0) is the normal-
ized distance between resonant surfaces. The problem
essentially been reduced now to one dimension with the v
ableu052d0kx8 as a parameter which is called the balloo
ing angle. Obviously, the growth rateg is periodic inu0 and
turns out to be maximal atu050,62p,64p, . . . . The de-
pendence of this maximal value ofg on the poloidal wave
numberm0 is shown in Fig. 1 for two sets of parameters.

For each eigenvalueg(u0), the problem~6! is solved by
an infinite set of eigenfunctionsF̃@u8,u012p l #5F̃@u8
22p l ,u0#. Therefore, the most unstable periodic~in u8
5u) solution of the linear problem to lowest order can
constructed in the following way:
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F~u8,u0!5d~u0! (
l 52`

`

F̃~u822p l ,u0!.

The back-transformation of Eqs.~3!–~5! results for y
P@2p/ky ;p/ky#,

F5
1

A2pd0

F̃~kyy,0!expF ikyS m01
x

d0
D y2 inkzz1g~0!t G .

This solution can be written in a Fourier series,

F5
1

2pd0
(
m

FF̃S x

d0
2m Dexp@ i ~m01m!kyy

2 inkzz1g~0!t#, ~7!

where the radial structure of each Fourier mode is descr
by the Fourier transformation of the eigenfunctio
F̃(kyy,0), which is typically Gaussian-shaped. Howeve
the global mode~7! is not localized in the radial direction
i.e., all Fourier modes have the same amplitude. To cap
the localization of the mode, one additional order must
retained in the ballooning approximation.

The eigenvalue problem up to the ordere2 can be written
in the form

@L0~g,u8,u0!1 i eL1~g,u8,u0!1e2L2~g,u8,u0!#F50,
~8!

where the smallness parametere has been formally intro-
duced. Developing the lowest order operatorL0(g,u8,u0)
ªL̃02g, the solutionF̃(u8,u0), and the growth rateg0(u0)
around u050 with u05O(e1/2), a solution of the two-
dimensional eigenvalue problem~8! in the vicinity of
F̃0(u8,u0) andg0(0) can be constructed. The detailed c
culation is presented in the Appendix. The result is

F5
1

A2pad0
(
m

expS 2
x2

2ad0
2DFF̃0S x

d0
2m D

3exp@ iky~m01m!y2 inkzz1~g0~0!1g2!t#. ~9!

FIG. 1. Linear growth rates of (m0 ,n) modes in the lowest
order ballooning approximation forx i51, n5x'52 ~boxes!, and
n5x'54 ~crosses!. Dashed lines indicate the growth rates of t
correspondingn56,12,18,24,30 ballooning modes obtained by
numerical resolution of the complete eigenvalue problem.
d

,

re
e

-

As for the solution in zeroth order~7!, the radial structure of
each Fourier component is characterized by the Fou
transformation of the functionF̃0(kyy,0). However, in~9!,
a slowly varying envelope is superimposed which captu
the radial localization of the mode.

A linear eigenmode is therefore a combination of seve
Fourier modes with the same toroidal wave numbern and
different poloidal wave numbersm. It has a much broade
radial profile than one single Fourier mode. These are
characteristics of the so-called global modes.

2. Numerical computation of global modes

As we can see from Fig. 1, the most unstable resis
ballooning modes are those with low toroidal wave numb
n. For these modes, we do not expect the first order ballo
ing approximation to give quantitativly good results, and w
therefore solve the eigenvalue problem numerically. The
sulting maximal growth rates are given in Fig. 1. In Fig.
we show a contour plot in a poloidal plane of the potentialf
for a typical eigenmode. Because the toroidal curvature
unfavorable on the low field side of a torus, the mode a
plitudes are much larger in this region relative to the hi
field side. This is why these modes are called ‘‘balloonin
modes.

In order to present the radial structure of such a mo
with a given toroidal wave numbern, we plot the radial
profiles of the different Fourier modes involved withm
52n . . . 3n in one graph. For a typical case, the result
plotted in Figs. 3~a! and 3~b! for the most unstable and th
second most unstable mode, respectively. The correspon
growth rates areg152.931022 and g 1̄524.631023, re-
spectively. For the first mode, each Fourier component ha
narrow profile which is approximately Gaussian and is loc
ized at one radial position given by the resonance condi
q(x)5m/n. The amplitudes of the different Fourier mode
are determined by a broad radial envelope which is also
proximately Gaussian. This structure is qualitatively well d
scribed by the analytical expression~9!. The second mos
unstable mode has an odd envelope profile, which can
analytically approximated by the second unstable solution

FIG. 2. Contour plot of the potentialf of a n518 ballooning
mode radially localized in the regionxP@xq52 ;xq53# in the poloi-
dal planez50. ~The vertical axis on the left represents the ma
axis of the torus.! Here,n5x'52.
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Eq. ~A3!. Note that the Fourier mode localized near the kn
of the envelope function also has an odd profile that can
described by a second unstable solution of the zeroth o
problem~6!.

C. Simulations in the nonlinear regime

We now have identified the structure of the linear glob
modes characterized by a coupling of several Fourier mo
over a broad radial domain. The fundamental question
naturally arises is the role of these modes in the presenc
nonlinear coupling. We will address this question in the n
chapter. First, we will describe the important nonlinear p
nomenon of shear flow generation captured by our mode

Each Fourier mode is localized at a resonant surfacq
5m/n determined by a vanishing parallel gradient. Since
want to study the interaction of ballooning modes at
plasma edge, the simulation region is restricted to the
main between theq52 and q53 surfaces. Only those
modes that are resonant in this interval are considered, u
toroidal mode numbern530. In order to restrict the numbe
of modes we have to deal with in the 3D simulations,
only include toroidal mode numbers ofn50,6,12,18, . . . in
the code. This does not represent an essential restriction
cause due to the axisymmetry of the geometry, there is
linear coupling between modes with different toroidal wa
numbers. The nonlinear coupling is resolved by taking i
account all modes with a given difference in toroidal wa
number (Dn56). In the radial direction, finite difference
are used and all fluctuations are extrapolated to zero

FIG. 3. Radial profiles of Fourier modes involved in the re
part of the potential of the most unstable (fn56,0) and second mos
unstable (fn56,1) n56 ballooning modes forx i52, n5x'53.5.
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width D outside the interval@xq52 ;xq53#.
The aspect of local flattening of the mean pressure gr

ent due to turbulence and its implications regarding transp
dynamics is not discussed here. Therefore, the retroactio
the electrostatic fluctuations on the pressure profile are
cluded in the simulations. This is done by neglecting t
nonlinear term in the evolution equation ofp00. Further in-
vestigations show that by removing this constraint and
driving the instability by a constant flux, an intermitte
transport with bursts can be observed in the 3D simulati
@13#, similarly to the results presented in Ref.@14# for 2D
interchange turbulence.

As usual, starting with some small-amplitude white noi
the numerical simulations show an exponential growth
potential and pressure fluctuations and the achievement
nonlinear saturated state. In a case close to the onset o
stability, this behavior is illustrated in Fig. 4, where th
volume-averaged kinetic energy of the fluctuationsv2

5(]xf)21(]yf)2 is plotted versus time. Note that in thi
case, a contribution of the (m,n)5(0,0) component associ
ated with an equilibrium electric field and an equilibriu
velocity of the plasma is not observed.

This situation changes when we lower the control para
eter going to a more unstable case. Now, as illustrated in
5, a significant contribution of a (m,n)5(0,0) component
develops. In the velocity fieldvW 5êz3¹f, this component
corresponds to a sheared poloidal rotation

l

FIG. 4. Time evolution of the volume-averaged kinetic ener
of the fluctuations close to the onset of instability (n5x'54.5).

FIG. 5. Same as Fig. 4, in a more unstable case (n5x'53.5).
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v0~x,t !5
]

]x
f00~x,t ! ~10!

of the plasma. Because the (m,n)5(0,0) mode is linearly
stable, the generation of shear flow must be a nonlinear p
nomenon. In the following, we will address the question
the relevant modes in this process and we will analyze t
mechanism of interaction leading to the self-generation
poloidal rotation by the fluctuations. Note that in the pre
ence of the shear flow, the level of turbulence is reduced
simulation in which the (m,n)5(0,0) component is artifi-
cially suppressed leads to a 28% higher fluctuation level
the same parameters.

III. LOW-DIMENSIONAL MODEL

A. Proper orthogonal decomposition

In order to identify the structures relevant in the proce
of shear flow generation, we apply the proper orthogo
decomposition~POD! method @1,15# to a time series ob-
tained from the numerical simulation illustrated in Fig.
Therefore, the real part of the Fourier components of
potential Refmn(xi ,t j ) is sampled at subsequent tim
t1 , . . . ,tN and the data is assembled in aN3M matrix F jk

R ,
wherek51 . . .M covers all spatial indices (m,n,i ). M is
given by the number of Fourier modes times the numbe
radial grid points.

The POD consists in expanding the discrete data int
unique set of modes that are orthonormal in time and sp

F jk
R 5 (

l 50

L21

wlAl~ t j !Fl@~m,n,i !k#,

where L5min(N,M ). The base functionsAl(t j ) and
Fl@(m,n,i )k# are eigensolutions of the two-point tempor
and spatial cross correlation matrices, respectively@15#. The
series is sorted in decreasing weight (wl) order. Coherent
structures that are highly correlated in time or in space
pear in heavily weighted components.

Evaluating the contributions of the different Fouri
modes in the simulation, we see that only a fraction of 1024

of the total energy is contained in the modes with toroi
wave numbern.18. In the POD, we therefore consider on
Fourier modes up ton518, which gives a total number o
3360 sampling points in the spatial direction~40 Fourier
modes times 84 radial grid points!. In the time direction, the
signal is sampled at 500 points in the saturated state sh
in Fig. 5 from t54000 tot55000. The values of the first 5
weights are plotted in Fig. 6 on a logarithmic scale. App
ently, the importance of the modes decreases rapidly w
increasing weight order.

The temporal behavior of the first four modes is shown
Fig. 7. The first mode (l 50) has a nearly constant ampl
tude. Some very small oscillations around the mean va
reproduce the oscillations observed in the saturation~Fig. 5!.
We therefore associate this first mode with the equilibri
part of the signal. This identification is also supported by
spatial structure of the mode that is completely dominated
the (m,n)5(0,0) part. The amplitudes of the radial profile
of all contributions with (m,n) different from zero are less
e-
f
ir
f
-
A

r

s
l

e

f

a
e,

-

l

n

-
th

e

e
y

than 1% of those of the equilibrium part. The latter is sho
in Fig. 8. Obviously, the radial profile has a minimum ne
x50. Therefore, the corresponding flow~10! is in opposite
directions at the inner and outer regions of our simulat
domain~sheared flow!.

As can be seen in Fig. 7~b!, the second important mod
( l 51) oscillates periodically in time. Its spatial structure
dominated by then56 parts; each contribution with toroida
wave number different from 6 is less than 4%. In order
present the structure of this mode, we plot the radial profi
of the contributions of the different Fourier modes withn
56 andm52n . . . 3n in one graph. The result is shown i
Fig. 9. It strongly resembles the linear eigenmode presen
in Fig. 3~a!.

The third and fourth important modes in the PODl
52,3) show a quasiperiodic behavior in time@Figs. 7~c! and
7~d!#. Their spatial structures are dominated by combinatio
of n56 andn512 parts shown in Fig. 10 forl 52 and Fig.
11 for l 53. Each other contribution is less than 0.6%
amplitude. Here, then56 parts strongly resemble the seco
unstable global mode presented in Fig. 3~b!. Then512 parts
are also governed by the corresponding global modes.

We therefore conclude that the modes relevant in the p
cess of shear flow generation revealed by the POD of
nonlinear simulations are determined by the linear glo
modes. Especially, we identify the five most importa
modes, which are the most unstable global modes witn
50,6,12 ~labeled by the indices 0, 1, and 2, respective
below! and the second most unstable global modes withn

56,12~labeled 1̄and 2̄, respectively!. In spite of analyzing a
situation close to the threshold of instability, this is not
obvious result, because the linear global modes are la
scale structures which we expect to be sensitive to the n
linear coupling.

B. Galerkin projection

The preceding analysis indicates that the system can
described by a low-dimensional model. We will now co
struct such a model for the dynamics of the amplitudes of
relevant modes that we have identified in the last sect
This low dimensional system should describe the mec
nisms of interaction of these modes in the process of sh
flow generation and fluctuation reduction.

The evolution equations~1,2! can be written in the form

FIG. 6. First weights of the POD.
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FIG. 7. Temporal behavior of the first four POD modes.
fe
e

e
e

by

i-
]

]t S ¹'
2 f

p
D 5L S f

p D 1H f,S ¹'
2 f

p
D J . ~11!

We construct a one-field equation that captures the main
tures of Eq.~11!, i.e., the same linear stability and the sam
nonlinearity for the potential

]

]t
¹'

2 f5Lefff1$f,¹'
2 f%, ~12!

FIG. 8. Radial dependence of the dominant (m,n)5(0,0) part
of the most important POD mode.
a-

where the linear operatorLeff is such that its eigenvalues ar
those of the operatorL in Eq. ~11! and the eigenvectors ar
close to the global modes. We approximate these modes

f05B0F~x!,

f15B1(
m

F~x!Fm~x!expi @~m01m!u2nw#1c.c.,

f 1̄5 iB 1̄(
m

xF~x!Fm~x!expi @~m01m!u2nw#1c.c.,

FIG. 9. Radial profile of Fourier modes involved in the dom
nantn56 part of the second most important POD mode.
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FIG. 10. Radial structures of the dominantn56 ~a! andn512
~b! parts for the third most important POD mode.

FIG. 11. Same as Fig. 10, for the fourth most important PO
mode.
f25B2(
m

F~x!Fm~x!exp 2i @~m01m!u2nw#1c.c.,

f 2̄5 iB 2̄(
m

xF~x!Fm~x!exp 2i @~m01m!u2nw#1c.c.,

where

F~x!5 expS 2
x2

2L2D , Fm~x!5 expF2
~x2md!2

2w2 G
and

B0
25

1

A2pL
, B1

25B2
25

d

2pLw
, B1̄

2
5B2̄

2
5

d

pL3w
.

Here, w represents the radial width of the Fourier mod
involved in the global modes andL is the width of the enve-
lope. The normalization is such that^f i ,f j&5d i j with the
standard scalar product.

Using the Galerkin approximation

f5a0f01a1f11a1̄f 1̄1a2f21a2̄f 2̄

in the evolution equation~12! and multiplying by each of the
modesf i reveals the amplitude equations

ȧ05g0a01C0
11̄a1a1̄1C0

22̄a2a2̄ , ~13a!

ȧ15g1a11C1
01̄a0a1̄1C1

1̄2a1̄a21C1
12̄a1a2̄ , ~13b!

ȧ1̄5g 1̄a1̄1C1̄
01

a0a11C1̄
12

a1a21C1̄
1̄2̄

a1̄a2̄ , ~13c!

ȧ25g2a21C2
02̄a0a2̄1C2

11̄a1a1̄ , ~13d!

ȧ2̄5g 2̄a2̄1C2̄
02

a0a21C2̄
11

a1
21C2̄

1̄1̄
a1̄

2 , ~13e!

where the coefficients are given by

Ci
jk5a jk^f i ,$f j ,¹'

2 fk%1$fk ,¹'
2 f j%&

and a jk512d jk/2. Note that we only specify the nonzer
coefficients; other coefficients are vanishing due to symm
try. The only nonvanishing coefficients in the evolutio
equation fora0 that correspond to the amplitude of the she

flow are C0
11̄ and C0

22̄ . This means that the only effectiv
coupling for shear flow generation is given by the interact
of the most unstable global mode with thesecondmost un-
stable global mode with the same toroidal wave numben.
Therefore, we expect the shear flow generation to se
clearly above the instability threshold, when the second m
unstable global mode is only weakly damped. This is
agreement with the numerical simulations shown in Figs
and 5 and was also found in the detailed analysis of sh
flow generation in 2D interchange turbulence in Ref.@9#.

Calculating the coefficients leads to

C0
11̄5

4w2

L2
D̃,
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C0
22̄52C0

11̄,

C1
01̄52F116

L2w2

r 0
2d2 S 11

w2

2L2
1

m0
2d2

3L2 D G D̃,

C1
1̄25F11

w2

L2
2

9

2

L2w2

r 0
2d2 S 11

w2

L2
1

m0
2d2

L2 D GD,

C1
12̄5S 11

w2

L2 D D,

C1̄
01

5F12
4w2

L2
16

L2w2

r 0
2d2 S 11

w2

2L2
1

m0
2d2

3L2 D G D̃,

C1̄
12

5F11
w2

L2
1

9

2

L2w2

r 0
2d2 S 11

w2

L2
1

m0
2d2

L2 D GD,

C1̄
1̄2̄

522
w2

L2
D,

C2
02̄52C1

01̄,

C2
11̄522S 11

w2

L2 D D,

C2̄
02

52C1̄
01 ,

C2̄
11

52C1
12̄ ,

C2̄
1̄1̄

52
w2

L2
D,

where

D5
4m0d1/2

9p1/2r 0L3/2w5/2
, D̃5

31/2p1/4w1/2

29/4d1/2
D.

Note that the energy conservation of the quadratic non
earity is verified by

C0
11̄1C1

01̄1C1̄
01

50,

C0
22̄1C2

02̄1C2̄
02

50,

C1
1̄21C1̄

12
1C2

11̄50,

C1
12̄1C2̄

11
50,

C1̄
1̄2̄

1C2̄
1̄1̄

50.

As we have seen, the POD of the fluctuating data from
numerical simulation reveals that the weights of the mo
are strongly decreasing with increasing weight number.
therefore apply the following scaling to the amplitudes:
-

e
s
e

a0 ,a1 ,a1̄;e, a2 ,a2̄;e2.

Additionally, we use an argument usually applied in~gener-
alized! center manifold reductions@9# which states that the
dynamics of the stable modes is governed by the domina
modes, i.e., the first are ‘‘slaved’’ by the latter. In order
further simplify the amplitude equations~13!, we assume
that modes 2 and 2¯ play the role of the slaved modes pro
viding an energy sink. Accordingly,g2 andg 2̄ are negative
and the amplitudesa2 ,a2̄ are functions ofa0 ,a1 ,a1̄ . As-
suming that the slaved modes relax rapidly to the amplitu
determined by the dominating modes, we can calculate
functional dependence from~13d, 13e! by setting the time
derivatives to zero and solving fora2 anda2̄ , respectively.
Settinge5w2/L2;L2/r 0

2, the result is

a2522
D

ug2u
a1a1̄1O~e3!,

a2̄52
D

ug 2̄u
a1

21O~e3!.

Using these expressions in~13a–13c!, we obtain a simplified
system of amplitude equations~neglecting terms of ordere4)

ȧ̃052eg̃0ã01eg̃0ã1ã1̄ , ~14a!

ȧ̃15g1ã12ã0ã1̄2n1ã1̄
2
ã12n2ã1

3 , ~14b!

ȧ̃1̄52g̃ 1̄ã1̄1ã0ã12n1ã1
2ã1̄ , ~14c!

where

eg̃052g0.0, g̃ 1̄52g 1̄.0,

n15
D2

D̃2

g̃0

ug2u
, n25

D2

2D̃2

g̃0

ug 2̄u
,

and

ã05D̃a0 , ã15
2D̃

Ag̃0

a1 , ã1̄5
2D̃

Ag̃0

a1̄ .

The system~14! has two nontrivial fixed points. The firs
one, for which there is no shear flow, is given by

ã050, ã1
25

g1

n2
, ã1̄50.

It corresponds to theL state. For a low enough dissipation, s
that

g1

n2
.

g̃ 1̄

12n1
.0, ~15!

this state is unstable and the system evolves to a second
point with nonvanishing shear flow and reduced fluctuat
level (H state!,
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ã05ã1ã1̄ , ã1
25

g̃ 1̄

12n1
,

ã1̄
2
5

n2

11n1
S g1

n2
2

g̃ 1̄

12n1
D .

Considering the linear stability problem of this fixed poin
the leading terms of the eigenvalues can be easily calcul
~two of them are of order one, the third is of ordere). The
result is that theH state becomes unstable for

2n1
2

11n1
S g1

n2
2

g̃1

12n1
D .

g̃ 1̄

12n1
.

It can be shown that due to the presence of the dissipa
terms, the solutions of the system~14! are bounded. The
Poincare´-Bendixson theorem~for details see, e.g.,@16#! then
implies that in the case where the two fixed points are
stable, the amplitudes evolve to a limit cycle, i.e., the syst
shows an oscillatory behavior.

For a typical set of parameters,g1 /g̃ 1̄56 and g2 /g̃ 2̄
52n2 /n151/2, the following scenario appears when lowe
ing the control parametern2: TheL state becomes unstable
n250.24. Below this threshold, the system evolves to theH
state. The latter is stable up ton25(4717A41)/400
'0.2296. For lower values of the dissipation, oscillating s
lutions are observed. A typical example is shown in Fig.

FIG. 12. Typical solution of the low-dimensional system~14!.
The parameters areg0520.001, g150.03, g 1̄520.005, n1

54n2, andn250.1.
ed

ve

-
m

-

-
.

This bifurcation behavior is in agreement with the obser
tions in the numerical simulations of the full dynamical sy
tem.

Note that if we assume that the mode 1¯ is slaved~instead
of dominating! and of the ordere2 ~instead ofe), a simpli-
fied system of equations for the amplitudesã0 andã1 can be
constructed in the same way as presented above. This sy
is close to the one obtained in Ref.@4# by a statistical analy-
sis in the case of strongly developed turbulence which w
presented as a paradigm for low to high (L-H) confinement
transition. However, this system does not reproduce the
stability of theH state and the evolution to oscillating state

IV. CONCLUSION

In this paper we applied a synergetic method to stu
nonlinear dynamical systems close to a stability threshold
consists of a combination of a POD and a subsequent Ga
kin projection. The POD reveals the relevant modes in
dynamical process considered, while the Galerkin project
provides a corresponding low-dimensional model. We illu
trated the method using the process of shear flow genera
in a 3D plasma dynamical system. The method can in p
ciple be used to investigate a large family of models. Inde
the dynamical system describing resistive ballooning fluct
tions in a tokamak belongs to a large class of convec
fluid systems including Rayleigh-Be´nard convection.

Numerical simulations were performed and a POD of
fluctuating signal showed that there is a small number
relevant modes. These modes are close to the linear mo
This is not a trivial result because the linear eigenmo
have a large radial extent~global modes! and are therefore
expected to be modified by the nonlinear coupling. The lo
dimensional model deduced by a Galerkin projection g
erns the main features of shear flow generation, turbule
reduction (L-H transition!, and the existence of oscillatin
solutions. It reproduces qualitatively the main properties
the full numerical simulations.

APPENDIX

Here we present the calculation of the linear eigenmo
including the first order in the ballooning approximation. T
operatorsL1 andL2 appearing in the eigenvalue problem~8!
are given by
L15
2

m0s0
2 S 1

k'
2

0

0 x i

D ]2

]u82

]

]u0
1

1

m0 S 2~m0ky!2

k'
2 ~g12nk'

2 ! 2
m0ky cos~u8!

k'
2

2m0ky 2~m0ky!2x'

D S ]

]u8
1

]

]u0
D ,

L25
1

m0
2 S ~m0ky!2

k'
2 $g12n@k'

2 12~m0ky!2#% 0

0 ~m0ky!2x'

D S ]

]u8
1

]

]u0
D 2

.
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Note thatuf/pu;e, n,x';e2, and for consistency with the
linear approximation in the safety factor, the contributions
the second and higher order in (R0jq0x)/(r 0Ls)
5x/(m0d0) have been neglected in the parallel gradient. T
lowest order problem~6! is represented byL0F0(u8,u0)
50. The most unstable solutionF̃0(u8,0) turns out to be an
even function ofu8. Additionally, Eq. ~8! implies that its
solution has the same parity inu8 and u0. Therefore, sepa
rating a slowly varying~in u05e1/2ũ0) amplitude and devel-
oping the remaining factor in a series aroundu050, the
lowest order solution can be written as

F̃0~u8,u0!5A~ ũ0!S F̃0~u8,0!1
e

2

]2F̃0

]u0
2 U0ũ0

2D .

Developing the growth rateg0(u0) and the operator
L0(g,u8,u0) aroundu050, the lowest order equation be
comes

e1/2
]L0

]u0
u0F̃0~u8,0!ũ01

e

2 FL0~g0~0!,u8,0!
]2F̃0

]u0
2 U

0

1S ]L0

]g U
g0(0)

d2g0

du0
2 U

0

1
]2L0

]u0
2 U

0
D F̃0~u8,0!G ũ0

250.

~A1!

We now look for a solution of the two-dimensional eige
value problem~8! in the vicinity of F̃0(u8,u0) andg0(0),

F~u8,u0!5F̃0~u8,u0!1e1/2F1~u8,u0!1eF2~u8,u0!,

g5g0~0!1e1/2g̃11eg̃2 .

Developing Eq.~8! and using Eq.~A1!, we find

L0„g0~0!,u8,0…~e1/2F11eF2!1H F e1/2g̃11eS g̃2

2
1

2

d2g0

du0
2 U

0

ũ0
2D G]L0

]g U
g0(0)

1 i eL11 i e3/2g̃1

]L1

]g U
g0(0)

1e2L2J A~ ũ0!F̃0~u8,0!1O~e3/2!50,

where we have assumed even parity forF1 and F2 as for
F̃0. Multiplying by the adjoined functionF̃0

1(u8,0) and in-
tegrating in u8 yields at orderse1/2 and e the solvability
conditions
ve
i

id
f

e

g̃1C0A1 iC1

dA

dũ0

50, ~A2!

S g̃22
1

2

d2g0

du0
2 U

0

ũ0
2D C0A1C2

d2A

dũ0
2

50, ~A3!

where

C05E
2`

`

du8~f̃0
1f̃01 p̃0

1p̃0!,

C15
1

m0
E

2`

`

du8H 2
2~m0ky!2

k'
2

f̃0
1Fg0~0!1d0

2 ]2

]u82

12nk'
2 G f̃01 im0kyF cos~u8!

k'
2

f̃0
1p̃02 p̃0

1f̃0G
22~m0ky!2p̃0

1S x id0
2 ]2

]u82
1x'D p̃0J ,

C252
1

m0
2E

2`

`

du8F ~m0ky!2

k'
2

f̃0
1$g0~0!12n@k'

2

12~m0ky!2#%f̃01~m0ky!2x'p̃0
1p̃0G ,

wherek' has to be evaluated atu050. It turns out thatC1

!C0 and therefore from Eq.~A2! g̃1'0. This has been use
in Eq. ~A3!. The most unstable solution of the latter is

A~ ũ0!5 expS 2
ã

2
ũ0

2D ,

where

ã25
C0

2C2

d2g0

du0
2 U

0

, g̃25
C2

C0
ã.

A solution of Eq. ~8! which is periodic inu85u can be
constructed,

F~u8,u0!5 expS 2
a

2
u0

2D (
l 52`

`

F̃0~u822p l ,0!,

wherea5ã/e. The back-transformation of Eqs.~3!–~5! for
yP@2p/ky ;p/ky# gives the result~9! presented in the main
part of the paper.
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